Traffic Flow Dynamics
Traffic Flow Dynamics

Data, Models and Simulation

Translated by Martin Treiber and Christian Thiemann

Springer
Preface

In order to keep people moving in times of rising traffic and limited resources, science is challenged to find intelligent solutions. Over the past few years, contributions from engineers, physicists, mathematicians, and behavioral psychologists have lead to a better understanding of driver behavior and vehicular traffic flow. This interdisciplinary field will surely produce further advances in the future. The focus is on new applications ranging from novel driver-assistance systems, to intelligent approaches to optimizing traffic flow, to the precise detection of traffic jams and the short-term forecasting of traffic for dynamic navigation aids.

This textbook offers a comprehensive and didactic account of the different aspects of vehicular traffic flow dynamics and how to describe and simulate them with mathematical models. We hope to make this fascinating field accessible to a broader readership; to date, it has only been documented in specialized scientific papers and monographs.

Part I describes how to obtain and interpret traffic flow data, the basis of any quantitative modeling. The second and main part is devoted to the different approaches and models used to mathematically describe traffic flow. The starting point of most models are the basic concepts of physics—many-particle systems, hydrodynamics, and classical Newtonian mechanics—augmented by behavioral aspects and traffic rules. At the website1 accompanying this book, the reader can interactively run a selection of traffic models and reproduce some of the simulation results displayed in the figures. Part III gives an overview of major applications including traffic-state estimation, fuel consumption, and emission modeling, determining travel times (the basis of dynamic navigation), and how to optimize traffic flow.

The book is written for students, lecturers, and professionals of engineering and transportation sciences and for interested students in general. It also offers material for project work in programming, numerical methods, simulation, and mathematical modeling at college and university level. The reference implementations in the

1 see: www.traffic-flow-dynamics.org
multi-model open-source vehicular traffic simulator *MovSim*\(^2\) can be used as a starting point for the reader’s own simulation experiments and model development.

This work originates from the lecture notes of courses in traffic flow dynamics and modeling at the Dresden University of Technology, Germany; these have been previously published, by the same publisher, in the German book “Verkehrsdy-namik und Simulation”. The English edition has been updated and significantly extended to include new topics, e.g., on model calibration. To underline its textbook character, it contains many problems with elaborated solutions.

We thank all colleagues at our Department for Traffic Econometrics and Modeling at the Dresden University of Technology, particularly Dirk Helbing, for various scientific discussions and stimulations. We would also like to thank Marietta Seifert, Christian Thiemann, and Stefan Lämmer for suggestions and corrections. Special thanks go to Martin Budden for reviewing the manuscript as a native English speaker. He is also one of the main contributors to *MovSim*. Finally, we would like to thank Martina Seifert, Christine and Hanskarl Treiber, Ingrid, Bernd, and Dörte Kesting, Claudia Perlitus, and Ralph Germ who contributed to the book with valuable suggestions.

Dresden, June 2012

Martin Treiber
Arne Kesting

\(^2\) see: www.movsim.org
Contents

1 Introduction .. 1

Part I Traffic Data

2 Trajectory and Floating-Car Data .. 7
 2.1 Data Collection Methods .. 7
 2.2 Time-Space Diagrams ... 9
 Problems ... 10

3 Cross-Sectional Data ... 13
 3.1 Microscopic Measurement: Single-Vehicle Data 13
 3.2 Aggregated Data ... 15
 3.3 Estimating Spatial Quantities from Cross-Sectional Data 17
 3.3.1 Traffic Density ... 17
 3.3.2 Space Mean Speed .. 21
 3.4 Determining Speed from Single-Loop Detectors 22
 Problems ... 23

4 Representation of Cross-Sectional Data ... 25
 4.1 Time Series of Macroscopic Quantities 25
 4.2 Speed-Density Relation .. 27
 4.3 Distribution of Time Gaps .. 30
 4.4 Flow-Density Diagram ... 31
 4.5 Speed-Flow Diagram .. 35
 Problems ... 35

5 Spatiotemporal Reconstruction of the Traffic State 37
 5.1 Spatiotemporal Interpolation ... 37
 5.2 Adaptive Smoothing Method ... 40
5.2.1	Characteristic Propagation Velocities	41
5.2.2	Nonlinear Adaptive Speed Filter	42
5.2.3	Parameters	43
5.2.4	Testing the Predictive Power: Validation	43
5.2.5	Testing the Robustness: Sensitivity Analysis	44
5.3	Data Fusion	45
5.3.1	Model-Based Validation of a Data Fusion Procedure	47
5.3.2	Weighting the Data Sources	48

Problems | 50 |

Part II Traffic Flow Modeling

6	General Aspects	55
6.1	History and Scope of Traffic Flow Theory	55
6.2	Model Classification	56
6.2.1	Aggregation Level	56
6.2.2	Mathematical Structure	59
6.2.3	Other Criteria	61
6.3	Non-Motorized Traffic	63

Problems | 65 |

7 Continuity Equation

7.1	Traffic Density and Hydrodynamic Flow-Density Relation	67
7.2	Continuity Equations for Several Road Profiles	69
7.2.1	Homogeneous Road Section	70
7.2.2	Sections with On- and Off-Ramps	71
7.2.3	Changes in the Number of Lanes	72
7.2.4	Discussion	74
7.3	Continuity Equation from the Driver’s Perspective	75
7.4	Lagrangian Description	77

Problems | 79 |

8 The Lighthill–Whitham–Richards Model

8.1	Model Equations	81
8.2	Propagation of Density Variations	83
8.3	Shock Waves	84
8.3.1	Formation	84
8.3.2	Derivation of the Propagation Velocity	86
8.3.3	Vehicle Speed Versus Propagation Velocities	87
8.4	Numerical Solution	90
8.5	LWR Models with Triangular Fundamental Diagram	91
8.5.1	Model Parameters	92
8.5.2	Characteristic Properties	93
8.5.3 Model Formulation with Measurable Quantities 96
8.5.4 Relation to Car-Following Models 97
8.5.5 Definition of Road Sections 99
8.5.6 Modeling Bottlenecks . 100
8.5.7 Numerical Solution of the Cell-Transmission
Model . 105
8.5.8 Solving the Section-Based Model 108
8.5.9 Examples . 113
8.6 Diffusion and Burgers’ Equation 121
Problems . 123
9 Macroscopic Models with Dynamic Velocity 127
9.1 Macroscopic Acceleration Function 127
9.2 Properties of the Acceleration Function 130
9.2.1 Steady-State Flow . 130
9.2.2 Plausibility Conditions . 130
9.3 General Form of the Model Equations 132
9.3.1 Local Speed Adaptation . 132
9.3.2 Nonlocal Anticipation . 133
9.3.3 Limiting Case of Zero Adaptation Time 133
9.3.4 Pressure Term . 134
9.3.5 Diffusion Terms . 136
9.3.6 On- and Off-Ramp Terms . 137
9.4 Overview of Second-Order Models 137
9.4.1 Payne’s Model . 138
9.4.2 Kerner–Konhäuser Model . 140
9.4.3 Gas-Kinetic-Based Traffic Model 142
9.5 Numerical Solution . 145
9.5.1 Overview . 145
9.5.2 Upwind and McCormack Scheme 147
9.5.3 Approximating Nonlocalities 148
9.5.4 Criteria for Selecting a Numerical
Integration Scheme . 148
9.5.5 Numerical Instabilities . 150
9.5.6 Numerical Diffusion . 153
Problems . 153
10 Elementary Car-Following Models 157
10.1 General Remarks . 157
10.2 Mathematical Description . 159
10.3 Steady State Equilibrium and the Fundamental Diagram . . . 162
10.4 Heterogeneous Traffic . 164
10.5 Fact Sheet of Dynamical Model Characteristics 165
10.5.1 Highway Scenario . 165
10.5.2 City Scenario . 168
10.6 Optimal Velocity Model .. 168
10.7 Full Velocity Difference Model 171
10.8 Newell’s Car-Following Model 173
Problems .. 178

11 Car-Following Models Based on Driving Strategies 181
11.1 Model Criteria .. 181
11.2 Gipps’ Model .. 183
 11.2.1 Safe Speed ... 183
 11.2.2 Model Equation .. 184
 11.2.3 Steady-State Equilibrium 185
 11.2.4 Model Characteristics 185
11.3 Intelligent Driver Model .. 187
 11.3.1 Required Model Properties 188
 11.3.2 Mathematical Description 188
 11.3.3 Parameters ... 189
 11.3.4 Intelligent Braking Strategy 191
 11.3.5 Dynamical Properties 193
 11.3.6 Steady-State Equilibrium 195
 11.3.7 Improved Acceleration Function 196
 11.3.8 Model for Adaptive Cruise Control 198
Problems .. 202

12 Modeling Human Aspects of Driving Behavior 205
12.1 Man Versus Machine .. 205
12.2 Reaction Times ... 207
12.3 Estimation Errors and Imperfect Driving Capabilities 210
 12.3.1 Modeling Estimation Errors 210
 12.3.2 Modeling Imperfect Driving 213
12.4 Temporal Anticipation .. 214
12.5 Multi-Vehicle Anticipation 215
12.6 Brake Lights and Further Exogenous Factors 218
12.7 Local Traffic Context 219
12.8 Action Points .. 220
12.9 The Wiedemann Car-Following Model 221
Problems .. 223

13 Cellular Automata .. 225
13.1 General Remarks ... 225
13.2 Nagel-Schreckenberg Model 229
13.3 Refined Models .. 232
 13.3.1 Barlovic Model .. 232
 13.3.2 KKW Model ... 233
16.4 Validation .. 333
Problems ... 337

17 The Phase Diagram of Congested Traffic States 339
17.1 From Ring Roads to Open Systems 339
17.2 Analysis of Traffic Patterns: Dynamic Phase Diagram 340
 17.2.1 Stability Class 1 342
 17.2.2 Stability Class 2 345
 17.2.3 Stability Class 3 346
17.3 Simulating Congested Traffic Patterns
 and the Phase Diagram 347
17.4 Reality Check: Observed Patterns of Traffic Jams 350
Problems ... 350

Part III Applications of Traffic Flow Theory

18 Traffic Flow Breakdown and Traffic-State Recognition 355
 18.1 Traffic Flow Breakdown: Three Ingredients
to Make a Traffic Jam 355
 18.2 Do Phantom Traffic Jams Exist? 360
 18.3 Stylized Facts of Congested Traffic 361
 18.4 Empirical Reality: Complex Patterns 363
 18.5 Fundamentals of Traffic State Estimation 364
Problems ... 365

19 Travel Time Estimation 367
 19.1 Definitions of Travel Time 367
 19.2 The Method of Trajectories 368
 19.3 The Method of Accumulated Vehicle Counts 369
 19.4 A Hybrid Method 371
 19.5 Virtual Stationary Detectors 373
 19.6 Virtual Trajectories 373
 19.7 Instantaneous Travel Time 375
Problems ... 376

20 Fuel Consumption and Emissions 379
 20.1 Overview .. 379
 20.1.1 Macroscopic Models 380
 20.1.2 Microscopic Models 382
 20.1.3 Relation Between Fuel Consumption
 and CO₂ Emissions 383
Contents

20.2 Speed-Profile Emission Models 383
20.3 Modal Emission Models 385
20.3.1 General Remarks 385
20.3.2 Phenomenological Models 386
20.3.3 Load-Based Models 387
20.4 Physics-Based Modal Consumption Model 388
20.4.1 Driving Resistance 388
20.4.2 Engine Power. .. 390
20.4.3 Consumption Rate 391
20.4.4 Characteristic Map for Engine Efficiency 392
20.4.5 Output Quantities 394
20.4.6 Aggregation to a Macroscopic Modal
Consumption Model ... 397
Problems .. 397

21 Model-Based Traffic Flow Optimization 403
21.1 Basic Principles .. 403
21.2 Speed Limits ... 405
21.3 Ramp Metering .. 407
21.4 Dynamic Routing ... 411
21.5 Efficient Driving Behavior and Adaptive Cruise Control. 412
21.6 Further Local Traffic Regulations 416
21.7 Objective Functions for Traffic Flow Optimization . 417
21.7.1 Setting up the Frame. 417
21.7.2 Constraining Conditions 418
21.7.3 Examples ... 419

Solutions to the Problems 423

Index ... 495